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Spin—orbit configuration interaction (Cl) is formulated in terms of the graphical unitary group approach
(GUGA) in combination with relativistic core potential and spirbit operators, thus providing an efficient
general method for treating the electronic structure of molecules containing heavy atoms. The development
of the spin-orbit matrix elements and the implementation of these methods in the COLUMBUS suite of
programs are described.

1. Introduction by Krauss and Steved.RECPs are obtained by several
Relativistic effects can be put into molecular electronic algorithms, particularly from wave functions from relativistic
calculations in a variety of ways. Pyykkeviewed thirteen such ~ atomic calculatior=2% and from fitting the energy results from
methods for relativistic quantum chemical calculations in 1988 all-electron atomic calculatiorfs Corresponding spirorbit
ranging from full four-component wave function methods to OPerators are obtained as part of the same précéss, by a
semiempirical methodsThere have been a number of other Separate process. N _
reviews of aspects of this field since th&d. The most In the procedure of Christiansen and co-work&esDirac—
extensively used method so far though has proven to be theFock atomic wave function is used as the starting point. For

relativistic effective core potential (RECP) method. The reason €ach pair of, j indices, the large-component radial function is
for the success of RECPs is two-fold. First, the effects of the used’ to determine the pseudoorbital by the shape-consistent
inner-shell electrons (which are the fastest moving electrons) Methods* they are defined to be equal to the valence radial
whose major relativistic changes in orbital sizes and energiesfunction in the valence region and to decrease smoothly and
are propagated out to the valence region, are included in thenodelessly through the core region to the value of zero at the
core potentials, so only the valence electrons need to be treatedUcléus. The pseudoorbital is then used to define the potential
explicitly. Second, many existing nonrelativistic algorithms can for that pair ofl, j indices. The electron repulsion interaction
be adapted to relativistic calculations using RECPs. The major @mong valence electrons is removed from these potentials.
additional complication is the need to include the spnbit There is no need to include terms for direct relativistic effects,

interaction for the valence electrons, which can be quite large SUCh as the dependence of mass on velocity, which are important
even if the electron speeds are not large. only in the core region, in the valence-electron Hamiltonian.

Including RECPs and valence spiorbit operators in con- Thus the Hamiltgnian fqr thg valence electrons is composed of
figuration-interaction (CI) calculations is the simplest way to the nonrelatlwst_lc I—_Iamlltonlan for the valence electrons plus
proceed 9 S. Y .19-13 added the spirorbit interaction to an the RECPs, whlph mclude the effects of the core electrqns as
(unreleased) early version of the COLUMBUS CI prografis, well as the relativistic effects on the valence electrons in the
which are one of several popular and efficient ab initio quantum Core regior’> The RECPs thus represent, for the valence
chemical computational packages available and portable to mostélectrons, the repulsion of the core electrons, the-sprbit
major computers. The graphical unitary group approach interaction with the nucleus, the spﬂprblt mteractl(_)n.w!th the
(GUGA)™15 was used for the direct Cl prograthél in this core electrons, and an approximation to the sqirbit inter-
package; this work started in the 1988s3nd has continued action between th_e valence electr@ﬁmhmh has usyally been
with many enhancementé.In this paper we describe the found to be quite small, especially for heavier element
implementation of the spirorbit interaction in an impending ~ Systems*—¢ )
release of the COLUMBUS programs (version 5.5). Direct ~ The potentials obtained have the form
spin—orbit Cl programs have also been written based on Slater
determinantg324 2

o 2
2. Relativistic Core Potential and Spin-Orbit Operator REP __ REP/ .\ A
Method U= ; Zl Ui (NG, 1)

The RECP method is an extension of the nonrelativistic J':H—;I
effective core potential approaéhwhich has been reviewed
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This form of core potential, with the spin-dependent projection  One limitation to the CIDBG program is that it calculates
operatorQy, is suitable for atomic calculations wikj coupled and stores the whole Hamiltonian matrix, so the calculations
basis sets, but is awkward with other basis sets, such as thoseare limited to matrices of order 500 000 on today’s mainstream
used in molecular work. The REP operators can be expressedvorkstations. It is, however, flexible in designating which
in a more readily usable form in terms of the spin-independent configurations are to be included and efficient in obtaining a
projection operators O large number of energy eigenvalues. Nevertheless, much more

| efficient programs are needed for high-accuracy calculations.

o= z [Imilim| = z OIJ @) 3. Spin—Orbit Configuration Interaction in the Graphical
m== Unitary Group Approach
REP __ AREP, \ A - A The GUGA CI programs in the COLUMBUS system are for
U™ = ;U| (N o+ Z&(r)' *SO multireference singles and doubles Cl calculations. We will not
B attempt to review their formulation here; rather, we will discuss
= UAREP | ps0 (4) only those parts of the GUGA Cl method needed to include
) o ) spin—orbit matrix elements in the overall formalism and
as the sum of core potentials and spatbit operators’=81t is computational proceduf&: 13
founc?” that theU""=(r) are approximately independent lof Including the spir-orbit interaction in the RECP approxima-
whenl| > L, whereL is one larger than the largelstvalue of tion, the total Hamiltonian is
the core electrons. Thed”REP and hs° can be reduced to
Hupiar = Ho + Hso (7)

AREP _ | JAREP, AREP, AREP, -~
U =u(n+ Z) U = U)o (5) where the spirrorbit-free HamiltoniarHy is given by
N

1
L == —_—
=2, 5010 © PP ®

With core potentials and spin-orbit operators given in the forms andHso is given by

of egs 5 and 6, existing programs for nonrelativistic calculations N

can be adapted to include relativistic effects. The additional Hy,= Zhs"(ﬂ) 9)
integrals ofUAREP and hs° are included in those evaluated by [=

the ARGOS prograii3°in the COLUMBUS programs. The

spin—orbit interaction can be included in the correlation step. Where

Such methodology was adopted in a (nondirect) spirbit CI

program, CIDBG® h*(u) = G(u)-S(w)
For molecules containing heavy elements, the presence of d — —1y s 10
and f valence shells with possibly large numbers of open-shell Z( ) q"’(ﬂ) V(’u) (10)

electrons will give rise to a large number of closely spaced

configurations, so multireference Cl calculations are expected where they summation here and in succeeding equations is
in general. In addition, the coupling of electrons in heavy- overthe 01 component values of a vector in spherical tensor
element systems is likely to be intermediate betwaerSand form. Generalized from eq &} is given by

w—w, thus requiring multireference calculations. States that are
of different symmetries in spinorbit-free calculations may be _
mixed by the spin-orbit interaction in spirbit CI calculations. q= Z S, (rp) T O| (11)
As a result, the reference space should in general also include, Ia=

besides the near-degenerate configurations in a-gpiit-free
description, all the configurations that strongly interact through
spin—orbit effects. For multireference calculations, CI is the
simplest correlation method to use in a general way. As a
consequence of the large number of references, the-spiit z z hy XX, + Z Z[Ij KIIX, XX X
Cl spaces for systems containing heavy elements may easily

La

whereA denotes the nuclei.
In second-quantized fornty can be written as

| o7

be an order of magnitude larger than those for systems (12)
containing only lighter elements. andHs, can be written as

Since the spirrorbit interaction is a one-electron operator
in the present formulation, its largest effects are determined by z z hm” o X (13)
its matrix elements between pairs of reference configurations TG

and between reference configurations and singly excited con-

figurations. In comparison, the electron repulsion interaction, where the operatorX;, and X, are the fermion creation and
as a two-electron operator, has major matrix elements betweerannihilation operators respectively for an electron in spatial
pairs of reference configurations and between reference con-orbitali (i =1, 2, ...,n denoting a basis of real spatial orbitals)
figurations and doubly excited configurations. Thus, in high- with spino. The coefficientdy; are the total of the kinetic energy
accuracy calculations, the electron repulsion interaction has(Te), nuclear attraction\(.¢), and core potential (AREP from
slower convergence properties than the sirbit interaction, eq 5) integrals; theijfkl] are electron repulsion integrals; and
so an important criterion for any method is that the electron the h°._ are the spir-orbit integrals over the spatial orbitals

ioj

repulsion aspect of the calculation be handled efficiently. (and spin functions in the spitorbit case):
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hy = 0T, + Ve + UFETj0 (14)
[ij:kll = WDk 2(1,2)j(1)I(2)T (15)
hf;jt = [io|h®jz0 (16)
=3 (-1)livlq_,s,liz0 (17)

Y
=Y (~1ylla_,iTbls, 0 (18)

Y

One-body and two-body operators are defifiday
Eia,jr = XIJ(rIXn (19)
B = Z XiXio = Z Eiojo (20)
&« = EjEq — OE; (21)
and satisfy the commutation relation
[Eijv Eal = EiEq — BEy

= 0By — 0By (22)

The Hamiltonian can be written in terms of these operators

1
Hiota = z hyE; + > _Zl[lj;kl]e.j,m + Z Zhisg,szia,jr
] 1)K, ]

ot

(23)
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TABLE 1: Step Numbers for the Distinct Row Graph

d AS AN,
0 0 0
1 Y, 1
2 ~1, 1
3 0 2

§—§-1andAN, = N,—N;-4, collectively called the step numbers
d; (Table 1), also uniquely specifies the basis. The casef of
=0, 1, 2, and 3 correspond to the addition of zero electrons,
one electron such tha#t§ = +%,, one electron such th#S
—1/,, and two electrons, respectively, to the intermediate state
formed from the firs§ — 1 spatial orbitals.

The step vector formed from the step numbers,

.d)

then provides a unique labeling of the Gel'fand states corre-
sponding to the subgroup chain of eq 25 and can be represented
compactly as a graph. The four step-number values are
distinguished by the different arc slopes.

Once this graphical representation is defidgd, can be
showrt®21that the matrix elements of the operators in eqgs 20
and 21 can be derived entirely graphically. Knowing the values
of these matrix elements and the values of the one- and two-
electron integrals, the nonzero matrix elements of the Hamil-
tonianHp can be identified and calculated. With this compact
representation of the Hilbert space as a graph, the structure of
the calculations can easily be visualized and very efficient
algorithms based on the Shavitt graph can be designed and
implementecf?40-46

The above basis functions of tHg(2n) irrep, with step

d=(d, d, ,, .. (26)

Once the values of these integrals are available, the evaluatiornumbersd and spin quantum numbe&andM, can be written

of the matrix elements dfiira OVer a chosen orbital (and spin)

space is reduced to the calculation of the matrix elements of

the unitary-group operatoks,;, Ej, and operator productg y
in the same space(s).

The N-electron Hilbert space is usually constructed from the
antisymmetric component of tiéth rank tensor product of the
one-electron Hilbert space which exhibits the unitary symmetry
U(2n), and the wave function can be expanded in terms of a
suitable basis for this irreducible presentation (irrep). We can
choose a spin-adapted basis by considering the following
subgroup chain:

U(2n) o U(n) ® U(2) (24)

In this representation, a basis function of thgn) irrep is the
direct product of a basis function of an irr€mf U(n), defined
by an orthonormal set afi spatial orbitals and spin quantum
numberS, and a basis function of the irrep &i(2) conjugate
to I', defined by the standard one-electron spin functions and
spin quantum numbe&andM. TheU(n) basis can be label&d
by the following subgroup chain:

Un)oUmn—1)>-+->U2)DU(1) (25)
Such a basis is known as the Gel'farifisetlin basis and the
individual basis functions are referred to as Gel'fand states.

The Shavitt distinct row graph is an elegant scheme of
representing this basis graphically. The irreplh) can be
specified by the spin quantum numb&r = S and the total
number of electrondl, = N. Then, for each subgroug(j), §
andN; may similarly be specified. The complete set$and
N; values for O< j < n uniquely specifies a Gel'fandTsetlin
basis. Equivalently, the complete set of change§ =

as

|(d)SM] (27)

The advantage of using such a basis is that the solution of the
spin—orbit problem can be carried out in the same framework
as the spir-orbit-free problem. To do so we need the matrix
elements oHs, over this basis.

As has been shown by a number of authfér8® matrix
elements of spin-dependent operators can be expressed in terms
of those of spin-independent operators. The simplest way to do
this is to make use of vector-coupling (Racah) algebra, but wave
functions constructed by this method differ by a phase factor
from the corresponding wave functions constructed by GUGA.
We will proceed to derive the matrix elements of the spin
orbit interaction term in eq 23 using the vector-coupling method,
and then we will insert the phase factors into the final matrix
elements expressions in order to have them correspond to
GUGA wave functions:

[{d")SM'|H(d)SMI
=3 S Y ol(-1yq,s [THd)SM'[E,;|()SMD

L ot vy

=Y > (F1)Tla., jId)SM'|Z,(i.)|(d)SMI
He (28)

where

Z,ij) = ¥ BIs l7[E,;, (29)

behaves like a rank-one tensor operator when applied to the
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spin space. Then by the WignreEckart theorem,

{d)SM'|Z,(i.)I(d)SM=

S—M' S 1 S , ..
(-1) (_M. ) M)Eﬂd)SIIZ(I,J)II(d)SJBO)
For the matrix elemeri{d’)SM'|Hsd (d)SM1o be nonzero (when
the spatial orbitals are realjl andd must differ by exactly
one orbital, i.e.d must be obtainable frord by substituting
orbitali for orbital j in stated, andy must satisfyy = M' — M.
Thus, only one term in the summation in eq 28, of spedifjc
andy, contributes to the spin-orbit matrix element between given
stateq(d")SM'Cand|(d)SMJJ So eq 28 can be further simplified
to

md')SM'|HSO|(d)SND case (b)
= (—1y'lla_, idd)SM'|Z,(i,j)I (d)SMI Level
n+l bh. =28+1
B . S 1 S ) o \\n+l
= (-1)° Mmqyuc(_M, ) M)Ead )SII1Z() (ST ae \ S am2
(31) n  p=28 \Q K =25+2
\
This reduced matrix elemenfd)S||Z(i,j)||(d)SJcan be evalu- \\
ated in terms of th&J(n+1) group operators (for example, see
ref 47)) case (c)
Figure 1. Graphical representation of sptorbit coupling; according
S s 1 -1 to ref 47, an additional electron is placed in the lewet 1 to embed
0d)S|11ZG.)I1(d)ST= (_1)SN+1+&l/2 1 1 1 the U(n) basis inU(n + 1) and to close the loop head.
J6 > > Sy

[d)S 11231 ))I1(d)S= (Fij)(N+1) 2

(d)N+1SN+1MN+1D(32) _[GE1)(ESH) (a)
S

, 1
Hd )N+1SN+1MN+1 En+1,jEi,n+1 + éEij

wheredy+1 denotes the step vector in ad ¢ 1)-electron system S2S+1) (b) (35)
with n + 1 orbitals andSy+1 and My are the corresponding S+H1
total spin and spin projection quantum numbers infkhe- 1 /(S+1) (©

electron system. For the reduced matrix elements to be nonzero,

S andSin eq 32 must satisfy where we have defined

! 1
in accordance with the selection rule. Correspondingly, the Ed IS iMieg En+lJEivn+1+EEiJ‘(d)NHSNHMNHD (36)

guantum numbeBy+, for the (N + 1)-electron system must
satisfy Using the eq 22 commutation relation and the eq 21 definition,

this can be reexpressed as

S+ %, S =85, @ (Fij)(N+1) =
; 1
S— %, S=s, (b) @d INe 1SN+ IMNt1 (8 prnerj T EEij‘(d)N+1S\H—1MN+1D (37)
S = 1 (34)
S+ > S=S+1, (¢ The first part of the above matrix elements f@®f+1n+1j iS
1 represented by the 8b type of loop defined by Sha¥its shown
S— > S=S-1, (d in Figure 2 fori < j (In the following we will assume < j; the
i > j case can be proved in a similar manner.)

The corresponding value is given by

)N+ 1S 1M1l € 1 (D1 Su M 5
-1

Case (d) can be obtained from case (c) by interchangiaigd
S, so we will not carry it further. The corresponding step

+ U — — U — ) n
numbers, at then(+ 1)th level, ared' 11 = dny1 = 1, d'nyg WR(r)]{WFg_L)(J)[ \/\/(F?E(r)]V\I(REE(n+ 1)+

Ohe1 = 2, andd' 11 = 2, dny1 = 1 respectively, for cases (a), WB(i)[ L L
(b), and (c), and are illustrated graphically in Figure 1. ! H N
Expressing the 6j symbols in eq 32 explicitly in terms & WO T WM IWE(n+1)} (38)

gives: r=j+1
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The value Fj)n denotes the product of exchange segment values
of the 8b type loop for the two-body operat@h1n+1; Up tO
the nth level:

n+l

-1 n
WL [T WROIWRGT [ Wal i <]
(Fin= e a
WO [T WLOIWEOL [T Wl i >
r=j+1 r=i+1 (44)

With the reduced matrix elements given by eq 43, the spin
orbit matrix element in eq 31 becomes

R [Qd)SM' [Hgg ()SM= (—1)° Mgy li0

EM' I%/I -M |\S/|)\/ S+TS+1(F‘J)N (45)

To further simplify the expression for the spinrbit matrix
Figure 2. Loop of type 8b from ref 16 representing the matrix elements €lements, we need to discuss the choice of the spin functions
for & n+intaj |SM] The spherical form of the spin functionSMJis not
symmetry adapted to the point group irreps and the-spibit
where thew's are the one- and two-body segment values and 4ty elements are complex in general. To have an efficient
the superscripts (0) and (1) denote the direct and exchangeggorithm for solving the many-electron problem, it is essential
pontanﬂons of the loop, respectivel§The d|re9t cgntnbuﬂon to choose a symmetry-adapted many-electron basis and to use
is identically zero unless the bra and ket coincide above the 5 g5 Hamiltonian matrix. For this purpose, the following “real
levelj and so is the contribution froftE;j. So we need consider spherical” form of spin functions can be chodéa?
the direct contribution only when the bra and ket are the same
above the levej,

1

ISM-C= S-S —MO- (~1)|S M, M=1t0S

n 1 n 1 V2
WRO [ WROIWRD + 1= = W) [ 21— (46)
- 20 T2 s L [is —MO+ (—1"sM]
e —— - - h
=~ SWk0) (39 V2F 2uo
2 M=0toS (47)
Then the first term of eq 38 becomes In this transformation, the factor ofis to make matrix elements
1 -1 real forS = S The rest of the transformation is the standard
— S WR) Wi(N)]We() (40) one to change the usual (complex) spherical harmonics into real
2 - L4 spherical harmonics.

As will be discussed later, the odd number of electrons case
exactly cancelling the contribution froAtE;. Thus €j)n-+1) can be adapted to the formalism for the even number of electrons
in the reduced matrix element in eq 35 is entirely given by the case, so the following discussion will be concentrated on systems
following exchange contribution & nt1;n+1j: with even numbers of electrons. The point groups used in the

-1 N COLUI\QBUS prograwz are t?zggrmﬁ%and its SLIJbgroups,
. . 1) 1 1 so our discussion will be confined to tiie, group also, even
(Fij)(NH) - WB(')[r_i lWR(r)]W(R_E(J)[rml WRE(V)]V\%E(” + though some conclusions are not specific to this requirement.

The use of groups of higher th&», symmetry offers additional
reduction of computational expense, but their non-Abelian
property would require considerable modification both of the
GUGA formalism and algorithms and of the integral-evaluation
program.

1 S Under theD%, (double) group, the Cartesian components of
——ACCLY) = - 2SrD) (a) the angular momentuni{, R,, andR,) transform as B, Bag,

2 ( ) and By, respectively, and the many-electron spin functions of
1 (3, 1) _ Stl (b) a system with an even number of electrons transform according
\/EA 2S to Ag + Big + Bag + B3g® (The S= 0 spin function transforms
1 (©) asAy). For groups with lower tha®, or C,, symmetry (in our
\ (42) case, the,, Cs, Ci, andC; groups), as well as fdE,, symmetry,
o ] ~more than one component of the angular momentum transforms
Combining egs 35, 41, and 42, we obtain for the reduced matrix according to the same irrep, so we classify the irreps by the
elements transformation properties of the components of the angular
momentum. Thus for a system with an even number of electrons,

[d)S|Z(.)I(d)ST= V(S + S+ D2F)"  (43) the many-electron spin functions transform as

1) (41)

For cases (&c) in eqgs 34, the segment vaIu‘vA@l—E(n + 1) are
given by®

Weln+1)=




5796 J. Phys. Chem. A, Vol. 103, No. 29, 1999

Yabushita et al.

A+R+R+R, (48) TABLE 2: Symmetry Properties of “Real Spherical” Spin
Functions

For integral values of total spi8 it can be shown, by examining S even S odd
the effect of theD, group operator€,,, Coy, andCy;, that the M spin function ~ symmetry  spin function  symmetry
spin functions in egs 46 and 47 are already symmetry-adapted g |00 A |S00] R,
to the irreps, as listed in Table 2. 135 |SM-0 R ISM-0O R

Using the Cartesian form of the spiorbit integrals over e [SM+0 Ry [SVH-O R
real orbitals,{|Gl|jC] we can show that the spirorbit matrix 2.46... ISM-0) R [SM-00 Aq
elements are purely real and that only one of the Cartesian ISMHD A ISMHD Re
componentsgysy, GySy, Or g;s, will contribute to a given matrix S M, FIH S+ 1, M, FO=

element if the spin functions in eqs 46 and 47 are used. First,

notice that, by the selection rule, we expect #patcan couple
states with the samé values ands, or g,s, can only couple
states withM values that differ exactly by 1.

1F6 S+M+1)(S—M+1
\/ (2 o 4 )mmzuEGFu)N (57)

(L+ 0y, 0(2S+ 1)(25+3)

To put the matrix elements in eq 45 in final, completely real, Thus these matrix elements are shown to be purely real and

form, (1) we use the operatok = —iq, which is real but

antihermitian (antisymmetric with real spatial orbitals i and j),

MAJC= —1mg§ljc= —GIAli0 (49)

(2) we drop thed’ andd indices for simplicity, (3) we substitute
the expressions for the j3symbols, (4) we transform to “real

spherical” spin functions, (5) we simplify them kM > 0, and

(6) we include the phase factor to convert to GUGA wave
functions, which is {1)S~S for the single-substitution cases

here4’

[ M+ 1, FJHyS M, £0= —[§ M, £[HJS M + 1, FO
(1% 0,0(S— M)(S+M+1)
83S+ 1)

MALTOF;)y (50)

B M+ 1, FH /S M, F= —[5 M, F|H

B LFOy(S—M)(S+M+1) )
== 835+ 1) ARy (51)

SM+1,F0

SOl

M

J29S+ 1)

(B M, £[H S M, F= + ARy (52)

S M+ 1, FH S+ 1, M, FO=
_ [AF 0u)(S—M)(S—M+1)
4(2S+ 1)(2S+ 3)

ALLTOFy)y (53)

B M, FIH S+ 1,M+ 1, F=

(1F 0y )(STM+1)(S+M+2)
4(2S+ 1)(2S+ 3)

ATy (54)

S M+ 1, FIH S+ 1, M, +0=
(L£ 0 )(S—M)(S—M+1)
4(2S+ 1)(2S+ 3)

ARy (59)

S M, F|H S+ 1,M + 1, (=
ﬂ'/(1 F Oy STM+1)S+M+2)

have contributions from only one componegs,, gySy, Or 0;S;.
Simple symmetry arguments can be used to reach the same
conclusion in cases wheR, R, andR; transform as different
species® Notice that the above arguments are independent of
the symmetry group used for the system, so implementations
based on this formalism can handle cases with symmetry groups
lower thanD; or Cy,.

4. Spin—Orbit GUGA CI: Implementation and
Performance

Before we discuss the implementation of the spinbit
formalism in the GUGA CI program units, a brief review of
the algorithms of the nonrelativistic GUGA Cl is in order. This
discussion will be mostly based on ref 20. The multireference
Cl space is generated by exciting one or two electrons from a
set of reference configurations. The orbital space is then divided
into internal and external spaces where the internal space
consists of all the singly and doubly occupied orbitals in the
set of reference configurations and the rest of the orbitals
constitute the external space and are placed at the bottom of
the graph. The internal space can be further divided into inactive
and active orbital spaces. The inactive orbitals are all doubly
occupied and are usually placed at the top of the graph. The
active orbitals have variable occupation numbers from zero to
two (in the reference configurations), and can be placed either
below or above the inactive orbitals. This partition results in a
simple structure of the distinct row graph as illustrated in Figure
3 for the internal part only. There are at most four vertices at
each level in the external part of the graph with singles and
doubles excitations. The four boundary vertices between the
internal part and external part of the graph are nathétfjoing
from right to left,Z vertex (no electrons), vertex (one electron),

X vertex (two electrons with triplet coupling), aill vertex

(two electrons with singlet coupling) according to the number
and coupling of electrons in the external space. A walk
representing a Gel'fand state then is divided into an internal
path and an external path lying within the internal and external
parts of the graph, respectively. The ordinal index of a CSF is
thus first determined by the ordering of the internal path and
then by the ordering of its external path among all the external
paths sharing that same internal path. The internal paths are
grouped by the boundary vertices from right to left and each
group is ordered by reverse lexical ordering. Two vectors, the
index vector and the symmetry vector, are used to represent
the internal paths and their combined symmetry. There is one
entry for each of the internal paths in these two vectors. An
entry in the index vector represents the ordinal number of the
first Gel'fand state that shares that internal path and any internal
path that is to be excluded is represented by the vallieThe
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a= 2 2 2 111100000 a= 2 11100000
b= 2 1 0 321043210 b= 0 2 104 3210
ji=s 61
j= 3
4
2
3
1
2
0
Figure 4. Spin—orbit distinct row graph for four electrons and three
1 internal orbitalso16
row graph has a single head. The spambit interaction,
however, will couple CSFs with different total spin valugs
0 In general, the appropriate Cl space spans the totally antisym-

metric irrep ofU(2n). A suitable basis then is that adapted to
the group chain of eq 24. So we need to consider all the irrep
spaces of théJ(n) with different total spin values in the

Figure 3. Internal part of a sample distinct row gragh.

symmetry of a walk is obtained as the direct product of the
internal walk symmetry, given in the symmetry vector, and the reduction of the totally antisymmetric irrep 0f{(2n). With the
external walk symmetry, calculated on the fly. restriction to single- and double-excitations from the reference
With the partitioning of the orbital space into internal and space, the allowed spin quantum values in the above reduction
external spaces, the calculation of the loop values required forare determined by the number of singly occupied orbitals, i.e.,
the evaluation of the matrix elements can be confined to the the possible number of unpaired electrons. The CIDRT program
internal space only and the contribution of the part of the loop is generalized to accommodate the generation of distinct row
in the external space can be combined easily due to the simpletables which are no longer restricted to a single top row of
structure of the external part of the distinct row grapAs the specificSsince there will be multiple such top rows consistent
one- or two-body operators in the Hamiltonian can couple with the number of unpaired electrons. Such a graph for four
configuration state functions (CSFs) that differ by at most two electrons and three internal orbitals is shown in Figure 4.
orbital indices, the corresponding loops may have zero, one, Consistent with the use di(n) ® U(2), each walk in the
two, three, or all four orbital indices in the external space and distinct row graph, representing the spatial part of the CSF, must
the calculation is structured accordingly. The integrals are sortedbe combined with the spin functions as defined in egs 46 and
into groups with zero external, one external, two external, three 47. So the internal path of a CSF will be defined to be the
external, and four external orbital indices and so are the internal part of the walk representing the spatial part of the CSF
corresponding loop values. and the spin function associated with it. Accordingly, instead
The post-HartreeFock Cl part of the COLUMBUS programs  of a vertex weight of one, each top level vertex is assigned a
consists of four separate program units, CIDRT, CISRT, CIUFT, weight equal to the spin multiplicity of that particular vertex
and CIUDG. The CIDRT program generates and stores the and the vertex weights are calculated similarly. The index vector
information about the Shavitt graph for later uses. The other then will have one entry for each internal path of a CSF and
programs are organized according to the number of externalthe symmetry vector contains the internal path symmetry, which
orbitals in the outer space and then the loop types, 1a, 1b, etc. s the direct product of the symmetry of the internal part of the
as defined in ref 16. For each given set of internal-orbital indices, walk and that of the spin function as given in Table 2.
the internal part of all the valid loops of each type are generated The CISRT program is modified to sort the spiorbit
in turn in CIUFT for later use in CIUDG. In this way the integrals in addition to the ordinary integrals. Since we are using
integrals naturally fall into categories, so they are sorted aone-body spin-orbit interaction and real spatial orbitals, exactly
accordingly in the CISRT program. A similar approach was later one orbital index must be different in any two given CSFs for
adopted and called “shape-driven” by Brooks et al. in their the spir-orbit matrix element between them to be nonzero, so
implementation of GUGA! Finally, the CIUDG program we need to consider only the zero-external, one-external, and
diagonalizes the Hamiltonian matrix by computing successive two-external cases in which zero, one, and two of the differing
matrix—vector products without ever forming the matrix orbitals are in the external space, respectively. Each sat, of

explicitly.

gy, andd; type of spir-orbit integrals is sorted into groups of

We now proceed to discuss the modification required for the zero-external, one-external, and two-external integrals similar

spin—orbit interaction. Without the spinorbit interaction, the
wave function is an eigenfunction of ti¥ operator with fixed
value of total spin quantum numb&rand the CI space spans

to the other one-electron integrals in CISRT.
Three subroutines are added to the CIUFT program to
calculate the spin-orbit loop valu€s, (i, j = 1..n) in eqs 56-

the irrep specified by the top distinct row so the resulting distinct 57. These are directly adapted from the zero-external, one-
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external, and two-external subroutines for the smirbit-free level
case. Only the exchange contributions of the 8b type of loops
(Figure 2) need be considered in the spambit case and the 0+l

loops forem+1),n+1) are only evaluated up to levalsince the

contribution of the it + 1) th level is explicitly folded into eq

42 and the loop may be open-ended at titke level. The n
quantities stored in the formula tape file for each spinbit

loop are the weights of the internal part of the ket and bra walks

and the internal loop values, as in the sparbit-free case. All

the CSFs with the same spatial ket and bra walks and different

spin functions share the same loop value. Instead of the weightFigure 5. Graphical representation of spinrbit coupling for a system

of the loop head in the spirorbit-free case, the spin values With an odd number of electrons: an additional noninteracting electron
corresponding to the ket and bra walks aré saved is added to make the system have an even number of eleétrons.

Similarly three subroutines adapted from zero-external, one- TABLE 3: Timing Data for Example Cl Calculations
external, and two-external subroutines for the sqrbit-free

S+1

. R . size of Cl(million) wall-clock time(hours)
case are added to the diagonalization program CIUDG. In this
program, the contributions of each integral to the matrix g'ig g'gg
elements of all the CSFs that share the same loop are considered 177 0.76
during each iteration. For each pair of ket and bra walks 0.25 0.083

specified for a given loop, the possible spin functions need to
be considered also. The contribution of the spin functions to programs. With one extra electron added, we are considering
the spin-orbit matrix elements, i.e., the factors other than the an (N + 1)-electron, § + 1)-orbital problem. The extra electron

spin—orbit integrals and the spirorbit loop values in eqs 50 always occupies then(+ 1)st orbital, either with spin up or
57, are stored in an array, and array look-up is used to speedwith spin down, as schematically illustrated in Figure 5. The
up the calculation. Hamiltonian is then the same as in eq 23 except that the

As already shown in detail, the Hamiltonian matrix for an Summation over the orbital indicésj goes ton instead ofn +
even number of electrons can always be made to be reall. Equivalently only the loops and integrals with orbital indices
symmetric by choosing the spin functions judiciously and less than or equal to are needed in the implementation. Only
including factors of in some of the spin functions. This result one of the K + 1)-electron irreps need be chosen in carrying
can also be obtained without using spin eigenfunctions by out calculations unless a center of inversion is present in which

considering 2-fold rotation operators working only in spin space, case two irreps of opposite parity must be used.

analogous to thD, point group (or rotation and reflection In Table 3 we list the timing data (diagonalization step only;
operators analogous &,) and showing that, for the two-open-  other steps require negligible time) for several calculations on
shell-electron case, the spin function§ — Bo,i(oc. — Sp), the uranyl ion (UG@*"). All were performed on a Sun Ultra 1

ao + BB, andi(a + fa) used with Slater determinants lead Model 200E Workstation. In all cases only one root was
to a real Hamiltonian matrix. Generalizing this result leads to converged and the convergence criterion was approximately
sums and differences of Slater determinants with their spin- 10°® En. Other examples are given in the documentation for
reversed counterparts (including some factorg shifficing to the COLUMBUS program&
insure a real symmetric Hamiltonian matrix. This same result ~ T0 date the preliminary versions of the program have been
has been derived using the time-reversal opefétor. used in studies of iodine compountsi®° lanthanide

It has also been showhthat D, or C,, spatial symmetry systems)>"2 actinide systems;™’" and for comparison pur-

suffice to make the Hamiltonian matrix real for both even and POSeS”
odd numbers of electrons. This leaves odd-electron systems with
less than this level of spatial symmetry giving complex
Hermitian Hamiltonian matrices. For odd-electron systems there
are in fact three distinct types of behavior for different amounts
of spatial symmetry as analyzed including the time-reversal
operato®58 of which the third one is the one described above.

ﬁgsn;ieb|r:d&ft“22;g:,vﬂ§f Jg&g}i&%@? lex Hermitian cases are Laboratory (ANL) for support from their Actinide Synchrotron
' . o ) Studies project, and Pacific Northwest National Laboratory
A method which makes the Hamiltonian matrix real Sym- - (p\NL) for support through Contract 200210, U.S. Department
metric in all odd-electron cases involves adding an additional ¢ Energy, the Mathematical, Information, and Computational
noninteracting electron. It was proposed and implemented by giance Division, High-Performance Computing and Com-
S. Y.'* and has the advantage that it uses the even-electrony, nications Program of the Office of Computational and
formalism already developed. For the complex Hermitian €aSes, Technology Research. PNNL is operated by Battelle Memorial
the replacement real symmetric matrix has twice the dimension. |ngityte under contract DE-AC06-76RLO 1830. We acknow-
Since the principal computational process in a direct Cl gqge the use of computational facilities at IMS, Ohio Super-

calculation is matrix-vector products, and complex multiplica- computer Center, ANL, and Ohio State University (largely
tions are equivalent to several real multiplications, the two provided by the I5NNL érant).
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