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Spin-orbit configuration interaction (CI) is formulated in terms of the graphical unitary group approach
(GUGA) in combination with relativistic core potential and spin-orbit operators, thus providing an efficient
general method for treating the electronic structure of molecules containing heavy atoms. The development
of the spin-orbit matrix elements and the implementation of these methods in the COLUMBUS suite of
programs are described.

1. Introduction

Relativistic effects can be put into molecular electronic
calculations in a variety of ways. Pyykko¨ reviewed thirteen such
methods for relativistic quantum chemical calculations in 1988
ranging from full four-component wave function methods to
semiempirical methods.1 There have been a number of other
reviews of aspects of this field since then.2-9 The most
extensively used method so far though has proven to be the
relativistic effective core potential (RECP) method. The reason
for the success of RECPs is two-fold. First, the effects of the
inner-shell electrons (which are the fastest moving electrons)
whose major relativistic changes in orbital sizes and energies
are propagated out to the valence region, are included in the
core potentials, so only the valence electrons need to be treated
explicitly. Second, many existing nonrelativistic algorithms can
be adapted to relativistic calculations using RECPs. The major
additional complication is the need to include the spin-orbit
interaction for the valence electrons, which can be quite large
even if the electron speeds are not large.

Including RECPs and valence spin-orbit operators in con-
figuration-interaction (CI) calculations is the simplest way to
proceed.2-9 S. Y.10-13 added the spin-orbit interaction to an
(unreleased) early version of the COLUMBUS CI programs,14,15

which are one of several popular and efficient ab initio quantum
chemical computational packages available and portable to most
major computers. The graphical unitary group approach
(GUGA)14,15 was used for the direct CI programs16,21 in this
package; this work started in the 1980s,22 and has continued
with many enhancements.14 In this paper we describe the
implementation of the spin-orbit interaction in an impending
release of the COLUMBUS programs (version 5.5). Direct
spin-orbit CI programs have also been written based on Slater
determinants.23,24

2. Relativistic Core Potential and Spin-Orbit Operator
Method

The RECP method is an extension of the nonrelativistic
effective core potential approach,25 which has been reviewed

by Krauss and Stevens.26 RECPs are obtained by several
algorithms, particularly from wave functions from relativistic
atomic calculations27-29 and from fitting the energy results from
all-electron atomic calculations.8 Corresponding spin-orbit
operators are obtained as part of the same process,8,28 or by a
separate process.30

In the procedure of Christiansen and co-workers28 a Dirac-
Fock atomic wave function is used as the starting point. For
each pair ofl, j indices, the large-component radial function is
used27 to determine the pseudoorbital by the shape-consistent
method;31 they are defined to be equal to the valence radial
function in the valence region and to decrease smoothly and
nodelessly through the core region to the value of zero at the
nucleus. The pseudoorbital is then used to define the potential
for that pair of l, j indices. The electron repulsion interaction
among valence electrons is removed from these potentials.

There is no need to include terms for direct relativistic effects,
such as the dependence of mass on velocity, which are important
only in the core region, in the valence-electron Hamiltonian.
Thus the Hamiltonian for the valence electrons is composed of
the nonrelativistic Hamiltonian for the valence electrons plus
the RECPs, which include the effects of the core electrons as
well as the relativistic effects on the valence electrons in the
core region.32 The RECPs thus represent, for the valence
electrons, the repulsion of the core electrons, the spin-orbit
interaction with the nucleus, the spin-orbit interaction with the
core electrons, and an approximation to the spin-orbit inter-
action between the valence electrons,33 which has usually been
found to be quite small, especially for heavier element
systems.34-36

The potentials obtained have the form
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This form of core potential, with the spin-dependent projection
operatorÔlj, is suitable for atomic calculations withj-j coupled
basis sets, but is awkward with other basis sets, such as those
used in molecular work. The REP operators can be expressed
in a more readily usable form in terms of the spin-independent
projection operators Oˆ l

as the sum of core potentials and spin-orbit operators.37,38It is
found27 that theUl

AREP(r) are approximately independent ofl
when l g L, whereL is one larger than the largestl value of
the core electrons. ThenUAREP andhso can be reduced to

With core potentials and spin-orbit operators given in the forms
of eqs 5 and 6, existing programs for nonrelativistic calculations
can be adapted to include relativistic effects. The additional
integrals ofUAREP andhso are included in those evaluated by
the ARGOS program37,39 in the COLUMBUS programs. The
spin-orbit interaction can be included in the correlation step.
Such methodology was adopted in a (nondirect) spin-orbit CI
program, CIDBG.38

For molecules containing heavy elements, the presence of d
and f valence shells with possibly large numbers of open-shell
electrons will give rise to a large number of closely spaced
configurations, so multireference CI calculations are expected
in general. In addition, the coupling of electrons in heavy-
element systems is likely to be intermediate betweenΛ-Sand
ω-ω, thus requiring multireference calculations. States that are
of different symmetries in spin-orbit-free calculations may be
mixed by the spin-orbit interaction in spin-orbit CI calculations.
As a result, the reference space should in general also include,
besides the near-degenerate configurations in a spin-orbit-free
description, all the configurations that strongly interact through
spin-orbit effects. For multireference calculations, CI is the
simplest correlation method to use in a general way. As a
consequence of the large number of references, the spin-orbit
CI spaces for systems containing heavy elements may easily
be an order of magnitude larger than those for systems
containing only lighter elements.

Since the spin-orbit interaction is a one-electron operator
in the present formulation, its largest effects are determined by
its matrix elements between pairs of reference configurations
and between reference configurations and singly excited con-
figurations. In comparison, the electron repulsion interaction,
as a two-electron operator, has major matrix elements between
pairs of reference configurations and between reference con-
figurations and doubly excited configurations. Thus, in high-
accuracy calculations, the electron repulsion interaction has
slower convergence properties than the spin-orbit interaction,
so an important criterion for any method is that the electron
repulsion aspect of the calculation be handled efficiently.

One limitation to the CIDBG program is that it calculates
and stores the whole Hamiltonian matrix, so the calculations
are limited to matrices of order 500 000 on today’s mainstream
workstations. It is, however, flexible in designating which
configurations are to be included and efficient in obtaining a
large number of energy eigenvalues. Nevertheless, much more
efficient programs are needed for high-accuracy calculations.

3. Spin-Orbit Configuration Interaction in the Graphical
Unitary Group Approach

The GUGA CI programs in the COLUMBUS system are for
multireference singles and doubles CI calculations. We will not
attempt to review their formulation here; rather, we will discuss
only those parts of the GUGA CI method needed to include
spin-orbit matrix elements in the overall formalism and
computational procedure.10-13

Including the spin-orbit interaction in the RECP approxima-
tion, the total Hamiltonian is

where the spin-orbit-free HamiltonianH0 is given by

andHso is given by

where

where theγ summation here and in succeeding equations is
over the 0,(1 component values of a vector in spherical tensor
form. Generalized from eq 6,qb is given by

whereA denotes the nuclei.
In second-quantized form,H0 can be written as

andHso can be written as

where the operatorsXiσ
+ and Xiσ are the fermion creation and

annihilation operators respectively for an electron in spatial
orbital i (i ) 1, 2, ...,n denoting a basis of real spatial orbitals)
with spinσ. The coefficientshij are the total of the kinetic energy
(Te), nuclear attraction (Vne), and core potential (UAREP from
eq 5) integrals; the [ij ;kl] are electron repulsion integrals; and
the hiσ,jτ

so are the spin-orbit integrals over the spatial orbitals
(and spin functions in the spin-orbit case):
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One-body and two-body operators are defined16 by

and satisfy the commutation relation

The Hamiltonian can be written in terms of these operators

Once the values of these integrals are available, the evaluation
of the matrix elements ofHtotal over a chosen orbital (and spin)
space is reduced to the calculation of the matrix elements of
the unitary-group operatorsEiσ,jτ, Eij, and operator productseij ,kl

in the same space(s).
TheN-electron Hilbert space is usually constructed from the

antisymmetric component of theNth rank tensor product of the
one-electron Hilbert space which exhibits the unitary symmetry
U(2n), and the wave function can be expanded in terms of a
suitable basis for this irreducible presentation (irrep). We can
choose a spin-adapted basis by considering the following
subgroup chain:

In this representation, a basis function of theU(2n) irrep is the
direct product of a basis function of an irrepΓ of U(n), defined
by an orthonormal set ofn spatial orbitals and spin quantum
numberS, and a basis function of the irrep ofU(2) conjugate
to Γ, defined by the standard one-electron spin functions and
spin quantum numbersSandM. TheU(n) basis can be labeled17

by the following subgroup chain:

Such a basis is known as the Gel’fand-Tsetlin basis and the
individual basis functions are referred to as Gel’fand states.

The Shavitt distinct row graph19 is an elegant scheme of
representing this basis graphically. The irrep ofU(n) can be
specified by the spin quantum numberSn ) S and the total
number of electronsNn ) N. Then, for each subgroupU(j), Sj

andNj may similarly be specified. The complete set ofSj and
Nj values for 0e j e n uniquely specifies a Gel’fand-Tsetlin
basis. Equivalently, the complete set of changes∆Sj )

Sj-Sj-1 and∆Nj ) Nj-Nj-1, collectively called the step numbers
dj (Table 1), also uniquely specifies the basis. The cases ofdj

) 0, 1, 2, and 3 correspond to the addition of zero electrons,
one electron such that∆Sj ) +1/2, one electron such that∆Sj

) -1/2, and two electrons, respectively, to the intermediate state
formed from the firstj - 1 spatial orbitals.

The step vector formed from the step numbers,

then provides a unique labeling of the Gel’fand states corre-
sponding to the subgroup chain of eq 25 and can be represented
compactly as a graph. The four step-number values are
distinguished by the different arc slopes.

Once this graphical representation is defined,19 it can be
shown16,21 that the matrix elements of the operators in eqs 20
and 21 can be derived entirely graphically. Knowing the values
of these matrix elements and the values of the one- and two-
electron integrals, the nonzero matrix elements of the Hamil-
tonianH0 can be identified and calculated. With this compact
representation of the Hilbert space as a graph, the structure of
the calculations can easily be visualized and very efficient
algorithms based on the Shavitt graph can be designed and
implemented.22,40-46

The above basis functions of theU(2n) irrep, with step
numbersd and spin quantum numbersSandM, can be written
as

The advantage of using such a basis is that the solution of the
spin-orbit problem can be carried out in the same framework
as the spin-orbit-free problem. To do so we need the matrix
elements ofHso over this basis.

As has been shown by a number of authors,47-55 matrix
elements of spin-dependent operators can be expressed in terms
of those of spin-independent operators. The simplest way to do
this is to make use of vector-coupling (Racah) algebra, but wave
functions constructed by this method differ by a phase factor
from the corresponding wave functions constructed by GUGA.47

We will proceed to derive the matrix elements of the spin-
orbit interaction term in eq 23 using the vector-coupling method,
and then we will insert the phase factors into the final matrix
elements expressions in order to have them correspond to
GUGA wave functions:

where

behaves like a rank-one tensor operator when applied to the

TABLE 1: Step Numbers for the Distinct Row Graph

dj ∆Sj ∆Nj

0 0 0
1 1/2 1
2 -1/2 1
3 0 2

hij ) 〈i|Te + Vne + UAREP|j〉 (14)
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Spin-Orbit Configuration Interaction J. Phys. Chem. A, Vol. 103, No. 29, 19995793



spin space. Then by the Wigner-Eckart theorem,

For the matrix element〈(d′)S′M′|Hso|(d)SM〉 to be nonzero (when
the spatial orbitals are real),d′ and d must differ by exactly
one orbital, i.e.d′ must be obtainable fromd by substituting
orbital i for orbital j in stated, andγ must satisfyγ ) M′ - M.
Thus, only one term in the summation in eq 28, of specifici, j
andγ, contributes to the spin-orbit matrix element between given
states|(d′)S′M′〉 and|(d)SM〉. So eq 28 can be further simplified
to

This reduced matrix element〈(d′)S′||Z(i,j)||(d)S〉 can be evalu-
ated in terms of theU(n+1) group operators (for example, see
ref 47)):

wheredN+1 denotes the step vector in an (N + 1)-electron system
with n + 1 orbitals andSN+1 andMN+1 are the corresponding
total spin and spin projection quantum numbers in theN + 1
electron system. For the reduced matrix elements to be nonzero,
S′ andS in eq 32 must satisfy

in accordance with the selection rule. Correspondingly, the
quantum numberSN+1 for the (N + 1)-electron system must
satisfy

Case (d) can be obtained from case (c) by interchangingSand
S′, so we will not carry it further. The corresponding step
numbers, at the (n + 1)th level, ared′n+1 ) dn+1 ) 1, d′n+1 )
dn+1 ) 2, andd′n+1 ) 2, dn+1 ) 1 respectively, for cases (a),
(b), and (c), and are illustrated graphically in Figure 1.

Expressing the 6-j symbols in eq 32 explicitly in terms ofS
gives:

where we have defined

Using the eq 22 commutation relation and the eq 21 definition,
this can be reexpressed as

The first part of the above matrix elements forei,n+1;n+1,j is
represented by the 8b type of loop defined by Shavitt,16 as shown
in Figure 2 fori < j (In the following we will assumei < j; the
i > j case can be proved in a similar manner.)

The corresponding value is given by

〈(d′)S′M′|Zγ(i,j)|(d)SM〉 )

(-1)S′-M′ (S′ 1 S
-M′ γ M )〈(d′)S′||Z(i,j)||(d)S〉 (30)
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2
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S′ - S) 0, (1 (but notS′ ) S) 0) (33)
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2
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2
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2
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2
, S′ ) S- 1, (d)

(34)

Figure 1. Graphical representation of spin-orbit coupling; according
to ref 47, an additional electron is placed in the leveln + 1 to embed
the U(n) basis inU(n + 1) and to close the loop head.

〈(d′)S′||Z(i,j)||(d)S〉 ) (Fij)(N+1) ×
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2
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where theW’s are the one- and two-body segment values and
the superscripts (0) and (1) denote the direct and exchange
contributions of the loop, respectively.16 The direct contribution
is identically zero unless the bra and ket coincide above the
level j and so is the contribution from1/2Eij. So we need consider
the direct contribution only when the bra and ket are the same
above the levelj,

Then the first term of eq 38 becomes

exactly cancelling the contribution from1/2Eij. Thus (Fij)(N+1)

in the reduced matrix element in eq 35 is entirely given by the
following exchange contribution ofei,n+1;n+1,j:

For cases (a-c) in eqs 34, the segment valuesWRL
(1)(n + 1) are

given by16

Combining eqs 35, 41, and 42, we obtain for the reduced matrix
elements

The value (Fij)N denotes the product of exchange segment values
of the 8b type loop for the two-body operatorei,n+1;n+1,j up to
the nth level:

With the reduced matrix elements given by eq 43, the spin-
orbit matrix element in eq 31 becomes

To further simplify the expression for the spin-orbit matrix
elements, we need to discuss the choice of the spin functions
|SM〉. The spherical form of the spin functions|SM〉 is not
symmetry adapted to the point group irreps and the spin-orbit
matrix elements are complex in general. To have an efficient
algorithm for solving the many-electron problem, it is essential
to choose a symmetry-adapted many-electron basis and to use
a real Hamiltonian matrix. For this purpose, the following “real
spherical” form of spin functions can be chosen:11,12

In this transformation, the factor ofιS is to make matrix elements
real for S′ * S. The rest of the transformation is the standard
one to change the usual (complex) spherical harmonics into real
spherical harmonics.

As will be discussed later, the odd number of electrons case
can be adapted to the formalism for the even number of electrons
case, so the following discussion will be concentrated on systems
with even numbers of electrons. The point groups used in the
COLUMBUS programs are theD2h group and its subgroups,
so our discussion will be confined to theD2h group also, even
though some conclusions are not specific to this requirement.
The use of groups of higher thanD2h symmetry offers additional
reduction of computational expense, but their non-Abelian
property would require considerable modification both of the
GUGA formalism and algorithms and of the integral-evaluation
program.

Under theD′2h (double) group, the Cartesian components of
the angular momentum (Rx, Ry, andRz) transform as B3g, B2g,
and B1g, respectively, and the many-electron spin functions of
a system with an even number of electrons transform according
to Ag + B1g + B2g + B3g

38 (TheS) 0 spin function transforms
asAg). For groups with lower thanD2 or C2V symmetry (in our
case, theC2, Cs, Ci, andC1 groups), as well as forC2h symmetry,
more than one component of the angular momentum transforms
according to the same irrep, so we classify the irreps by the
transformation properties of the components of the angular
momentum. Thus for a system with an even number of electrons,
the many-electron spin functions transform as

Figure 2. Loop of type 8b from ref 16 representing the matrix elements
for ei,n+1;n+1,j.
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〈(d′)S′M′|Hso|(d)SM〉 ) (-1)S′-M〈i|qM-M′|j〉

(S′ 1 S
-M′ M′ - M M )xS′ + S + 1
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(46)
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M ) 0 toS (47)
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For integral values of total spinS, it can be shown, by examining
the effect of theD2 group operatorsC2x, C2y, andC2z, that the
spin functions in eqs 46 and 47 are already symmetry-adapted
to the irreps, as listed in Table 2.

Using the Cartesian form of the spin-orbit integrals over
real orbitals,〈i|qb|j〉, we can show that the spin-orbit matrix
elements are purely real and that only one of the Cartesian
components,qxsx, qysy, or qzsz will contribute to a given matrix
element if the spin functions in eqs 46 and 47 are used. First,
notice that, by the selection rule, we expect thatqzsz can couple
states with the sameM values andqxsx or qysy can only couple
states withM values that differ exactly by 1.

To put the matrix elements in eq 45 in final, completely real,
form, (1) we use the operatorΛB ) -ıqb, which is real but
antihermitian (antisymmetric with real spatial orbitals i and j),

(2) we drop thed′ andd indices for simplicity, (3) we substitute
the expressions for the 3-j symbols, (4) we transform to “real
spherical” spin functions, (5) we simplify them toM g 0, and
(6) we include the phase factor to convert to GUGA wave
functions, which is (-1)S′-S for the single-substitution cases
here:47

Thus these matrix elements are shown to be purely real and
have contributions from only one componentqxsx, qysy, or qzsz.
Simple symmetry arguments can be used to reach the same
conclusion in cases whereRx, Ry, andRz transform as different
species.38 Notice that the above arguments are independent of
the symmetry group used for the system, so implementations
based on this formalism can handle cases with symmetry groups
lower thanD2 or C2V.

4. Spin-Orbit GUGA CI: Implementation and
Performance

Before we discuss the implementation of the spin-orbit
formalism in the GUGA CI program units, a brief review of
the algorithms of the nonrelativistic GUGA CI is in order. This
discussion will be mostly based on ref 20. The multireference
CI space is generated by exciting one or two electrons from a
set of reference configurations. The orbital space is then divided
into internal and external spaces where the internal space
consists of all the singly and doubly occupied orbitals in the
set of reference configurations and the rest of the orbitals
constitute the external space and are placed at the bottom of
the graph. The internal space can be further divided into inactive
and active orbital spaces. The inactive orbitals are all doubly
occupied and are usually placed at the top of the graph. The
active orbitals have variable occupation numbers from zero to
two (in the reference configurations), and can be placed either
below or above the inactive orbitals. This partition results in a
simple structure of the distinct row graph as illustrated in Figure
3 for the internal part only. There are at most four vertices at
each level in the external part of the graph with singles and
doubles excitations. The four boundary vertices between the
internal part and external part of the graph are named,16,22going
from right to left,Z vertex (no electrons),Yvertex (one electron),
X vertex (two electrons with triplet coupling), andW vertex
(two electrons with singlet coupling) according to the number
and coupling of electrons in the external space. A walk
representing a Gel’fand state then is divided into an internal
path and an external path lying within the internal and external
parts of the graph, respectively. The ordinal index of a CSF is
thus first determined by the ordering of the internal path and
then by the ordering of its external path among all the external
paths sharing that same internal path. The internal paths are
grouped by the boundary vertices from right to left and each
group is ordered by reverse lexical ordering. Two vectors, the
index vector and the symmetry vector, are used to represent
the internal paths and their combined symmetry. There is one
entry for each of the internal paths in these two vectors. An
entry in the index vector represents the ordinal number of the
first Gel’fand state that shares that internal path and any internal
path that is to be excluded is represented by the value-1. The

A + Rx + Ry + Rz (48)

〈i|ΛB|j〉 ) -ı〈i|qb|j〉 ) -〈j|ΛB|i〉 (49)

〈S, M + 1, -|Hso|S, M, (〉 ) -〈S, M, (|Hso|S, M + 1, -〉

) (x(1 ( δM,0)(S- M)(S+ M + 1)

8S(S+ 1)
〈i|Λx|j〉(Fij)N (50)

〈S, M + 1, -|Hso|S, M, -〉 ) -〈S, M, -|Hso|S, M + 1, -〉

) -x(1 - δM,0)(S- M)(S+ M + 1)

8S(S+ 1)
〈i|Λy|j〉(Fij)N (51)

〈S, M, (|Hso|S, M, -〉 ) ( M

x2S(S+ 1)
〈i|Λz|j〉(Fij)N (52)

〈S, M + 1, -|Hso|S+ 1, M, -〉 )

-x(1 - δM,0)(S- M)(S- M + 1)

4(2S+ 1)(2S+ 3)
〈i|Λx|j〉(Fij)N (53)

〈S, M, -|Hso|S+ 1, M + 1, -〉 )

x(1 - δM,0)(S+ M + 1)(S+ M + 2)

4(2S+ 1)(2S+ 3)
〈i|Λx|j〉(Fij)N (54)

〈S, M + 1, -|Hso|S+ 1, M, (〉 )

-x(1 ( δM,0)(S- M)(S- M + 1)

4(2S+ 1)(2S+ 3)
〈i|Λy|j〉(Fij)N (55)

〈S, M, -|Hso|S+ 1, M + 1, (〉 )

-x(1 - δM,0)(S+ M + 1)(S+ M + 2)

4(2S+ 1)(2S+ 3)
〈i|Λy|j〉(Fij)N (56)

TABLE 2: Symmetry Properties of “Real Spherical” Spin
Functions

S even S odd

M spin function symmetry spin function symmetry

0 |S0〉 Ag |S0〉 Rz

1,3,5... |SM-〉 Rx |SM-〉 Ry

|SM+〉 Ry |SM+〉 Rx

2,4,6... |SM-〉 Rz |SM-〉 Ag

|SM+〉 Ag |SM+〉 Rz

〈S, M, -|Hso|S+ 1, M, -〉 )

x(1 - δM,0)(S+ M + 1)(S- M + 1)

(1 + δM,0)(2S+ 1)(2S+ 3)
〈i|Λz|j〉(Fij)N (57)
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symmetry of a walk is obtained as the direct product of the
internal walk symmetry, given in the symmetry vector, and the
external walk symmetry, calculated on the fly.

With the partitioning of the orbital space into internal and
external spaces, the calculation of the loop values required for
the evaluation of the matrix elements can be confined to the
internal space only and the contribution of the part of the loop
in the external space can be combined easily due to the simple
structure of the external part of the distinct row graph.22 As the
one- or two-body operators in the Hamiltonian can couple
configuration state functions (CSFs) that differ by at most two
orbital indices, the corresponding loops may have zero, one,
two, three, or all four orbital indices in the external space and
the calculation is structured accordingly. The integrals are sorted
into groups with zero external, one external, two external, three
external, and four external orbital indices and so are the
corresponding loop values.

The post-Hartree-Fock CI part of the COLUMBUS programs
consists of four separate program units, CIDRT, CISRT, CIUFT,
and CIUDG. The CIDRT program generates and stores the
information about the Shavitt graph for later uses. The other
programs are organized according to the number of external
orbitals in the outer space and then the loop types, 1a, 1b, etc.,
as defined in ref 16. For each given set of internal-orbital indices,
the internal part of all the valid loops of each type are generated
in turn in CIUFT for later use in CIUDG. In this way the
integrals naturally fall into categories, so they are sorted
accordingly in the CISRT program. A similar approach was later
adopted and called “shape-driven” by Brooks et al. in their
implementation of GUGA.41 Finally, the CIUDG program
diagonalizes the Hamiltonian matrix by computing successive
matrix-vector products without ever forming the matrix
explicitly.

We now proceed to discuss the modification required for the
spin-orbit interaction. Without the spin-orbit interaction, the
wave function is an eigenfunction of theS2 operator with fixed
value of total spin quantum numberS and the CI space spans
the irrep specified by the top distinct row so the resulting distinct

row graph has a single head. The spin-orbit interaction,
however, will couple CSFs with different total spin valuesS.
In general, the appropriate CI space spans the totally antisym-
metric irrep ofU(2n). A suitable basis then is that adapted to
the group chain of eq 24. So we need to consider all the irrep
spaces of theU(n) with different total spin valuesS in the
reduction of the totally antisymmetric irrep ofU(2n). With the
restriction to single- and double-excitations from the reference
space, the allowed spin quantum values in the above reduction
are determined by the number of singly occupied orbitals, i.e.,
the possible number of unpaired electrons. The CIDRT program
is generalized to accommodate the generation of distinct row
tables which are no longer restricted to a single top row of
specificSsince there will be multiple such top rows consistent
with the number of unpaired electrons. Such a graph for four
electrons and three internal orbitals is shown in Figure 4.

Consistent with the use ofU(n) X U(2), each walk in the
distinct row graph, representing the spatial part of the CSF, must
be combined with the spin functions as defined in eqs 46 and
47. So the internal path of a CSF will be defined to be the
internal part of the walk representing the spatial part of the CSF
and the spin function associated with it. Accordingly, instead
of a vertex weight of one, each top level vertex is assigned a
weight equal to the spin multiplicity of that particular vertex
and the vertex weights are calculated similarly. The index vector
then will have one entry for each internal path of a CSF and
the symmetry vector contains the internal path symmetry, which
is the direct product of the symmetry of the internal part of the
walk and that of the spin function as given in Table 2.

The CISRT program is modified to sort the spin-orbit
integrals in addition to the ordinary integrals. Since we are using
a one-body spin-orbit interaction and real spatial orbitals, exactly
one orbital index must be different in any two given CSFs for
the spin-orbit matrix element between them to be nonzero, so
we need to consider only the zero-external, one-external, and
two-external cases in which zero, one, and two of the differing
orbitals are in the external space, respectively. Each set ofqx,
qy, andqz type of spin-orbit integrals is sorted into groups of
zero-external, one-external, and two-external integrals similar
to the other one-electron integrals in CISRT.

Three subroutines are added to the CIUFT program to
calculate the spin-orbit loop valuesFij, (i, j ) 1...n) in eqs 50-
57. These are directly adapted from the zero-external, one-

Figure 3. Internal part of a sample distinct row graph.16

Figure 4. Spin-orbit distinct row graph for four electrons and three
internal orbitals.10,16
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external, and two-external subroutines for the spin-orbit-free
case. Only the exchange contributions of the 8b type of loops
(Figure 2) need be considered in the spin-orbit case and the
loops forei(n+1),(n+1)j are only evaluated up to leveln since the
contribution of the (n + 1) th level is explicitly folded into eq
42 and the loop may be open-ended at thenth level. The
quantities stored in the formula tape file for each spin-orbit
loop are the weights of the internal part of the ket and bra walks
and the internal loop values, as in the spin-orbit-free case. All
the CSFs with the same spatial ket and bra walks and different
spin functions share the same loop value. Instead of the weight
of the loop head in the spin-orbit-free case, the spin values
corresponding to the ket and bra walks are saved.

Similarly three subroutines adapted from zero-external, one-
external, and two-external subroutines for the spin-orbit-free
case are added to the diagonalization program CIUDG. In this
program, the contributions of each integral to the matrix
elements of all the CSFs that share the same loop are considered
during each iteration. For each pair of ket and bra walks
specified for a given loop, the possible spin functions need to
be considered also. The contribution of the spin functions to
the spin-orbit matrix elements, i.e., the factors other than the
spin-orbit integrals and the spin-orbit loop values in eqs 50-
57, are stored in an array, and array look-up is used to speed
up the calculation.

As already shown in detail, the Hamiltonian matrix for an
even number of electrons can always be made to be real
symmetric by choosing the spin functions judiciously and
including factors ofı in some of the spin functions. This result
can also be obtained without using spin eigenfunctions by
considering 2-fold rotation operators working only in spin space,
analogous to theD2 point group (or rotation and reflection
operators analogous toC2V) and showing that, for the two-open-
shell-electron case, the spin functionsRâ - âR,ı(RR - ââ),
RR + ââ, andı(Râ + âR) used with Slater determinants lead
to a real Hamiltonian matrix. Generalizing this result leads to
sums and differences of Slater determinants with their spin-
reversed counterparts (including some factors ofı) sufficing to
insure a real symmetric Hamiltonian matrix. This same result
has been derived using the time-reversal operator.24

It has also been shown38 that D2 or C2V spatial symmetry
suffice to make the Hamiltonian matrix real for both even and
odd numbers of electrons. This leaves odd-electron systems with
less than this level of spatial symmetry giving complex
Hermitian Hamiltonian matrices. For odd-electron systems there
are in fact three distinct types of behavior for different amounts
of spatial symmetry as analyzed including the time-reversal
operator,56-58 of which the third one is the one described above.
Some reductions in size for the complex Hermitian cases are
possible, but somewhat complicated.59,60

A method which makes the Hamiltonian matrix real sym-
metric in all odd-electron cases involves adding an additional
noninteracting electron. It was proposed and implemented by
S. Y.,13 and has the advantage that it uses the even-electron
formalism already developed. For the complex Hermitian cases,
the replacement real symmetric matrix has twice the dimension.
Since the principal computational process in a direct CI
calculation is matrix-vector products, and complex multiplica-
tions are equivalent to several real multiplications, the two
procedures are approximately equivalent computationally. For
the D2 or C2V or higher symmetry cases, there is no change in
the size of the matrix.

This extra-electron implementation for the case of systems
with an odd number of electrons is used in the COLUMBUS

programs. With one extra electron added, we are considering
an (N + 1)-electron, (n + 1)-orbital problem. The extra electron
always occupies the (n + 1)st orbital, either with spin up or
with spin down, as schematically illustrated in Figure 5. The
Hamiltonian is then the same as in eq 23 except that the
summation over the orbital indicesi, j goes ton instead ofn +
1. Equivalently only the loops and integrals with orbital indices
less than or equal ton are needed in the implementation. Only
one of the (N + 1)-electron irreps need be chosen in carrying
out calculations unless a center of inversion is present in which
case two irreps of opposite parity must be used.

In Table 3 we list the timing data (diagonalization step only;
other steps require negligible time) for several calculations on
the uranyl ion (UO2

2+). All were performed on a Sun Ultra 1
Model 200E Workstation. In all cases only one root was
converged and the convergence criterion was approximately
10-8 Eh. Other examples are given in the documentation for
the COLUMBUS programs.15

To date the preliminary versions of the program have been
used in studies of iodine compounds,12,61-69 lanthanide
systems,70-72 actinide systems,73-77 and for comparison pur-
poses.78
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